Lattice distortion effects on the magnetostructural phase transition of MnAs.
نویسندگان
چکیده
We present a systematic experimental and theoretical study of the first-order phase transition of epitaxially grown MnAs thin films under biaxial tensile stress. Our results give direct information on the dependence of the phase-transition temperature of MnAs films on the lattice parameters. We demonstrate that an increase of the lattice constant in the hexagonal plane raises the phase-transition temperature (T(p)), while an increase of the perpendicular lattice constant lowers T(p). The results of calculations based on density functional theory are in good agreement with the experimental ones. Our findings open exciting prospects for magneto-mechanical devices, where the critical temperature for ferromagnetism can be engineered by external stress.
منابع مشابه
Strain-induced high ferromagnetic transition temperature of MnAs epilayer grown on GaAs (110)
MnAs films are grown on GaAs surfaces by molecular beam epitaxy. Specular and grazing incidence X-ray diffractions are used to study the influence of different strain states of MnAs/GaAs (110) and MnAs/GaAs (001) on the first-order magnetostructural phase transition. It comes out that the first-order magnetostructural phase transition temperature Tt, at which the remnant magnetization becomes z...
متن کاملBiaxial strain in the hexagonal plane of MnAs thin films: the key to stabilize ferromagnetism to higher temperature.
The alpha-beta magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more importan...
متن کاملتوصیف توپولوژیکی گذار نیمفلزی بلور MnAs
Topological analysis of the electronic charge density is introduced as a new tool for studying the electronic properties of the materials. In this method, the eigen values of the Hessian matrix of the electronic charge density as an scalar field are used to estimate the strength of the atomic bonds. We employ this method to study the half-metallic phase transition of MnAs in zinc blende structu...
متن کاملIsothermal martensitic transformation in metamagnetic shape memory alloys
We show that in metamagnetic shape memory alloys exhibiting a magnetostructural first order phase transition the direct transition from ferromagnetic austenite to nonmagnetic martensite is isothermal. In contrast to the direct transformation, the reverse one nonmagnetic martensite–ferromagnetic austenite is athermal, just as are athermal both direct and reverse martensitic transformations in co...
متن کاملDiverse structural and magnetic properties of differently prepared MnAs nanoparticles.
Discrete nanoparticles of MnAs with distinct magnetostructural properties have been prepared by small modifications of solution-phase arrested precipitation reactions. Rietveld and X-ray atomic pair distribution function based approaches were used to explore the evolution of the structure of the samples with temperature, and these data were compared to the magnetic response measured with ac sus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 95 7 شماره
صفحات -
تاریخ انتشار 2005